A Bayesian Regression Model and Applications
نویسندگان
چکیده
منابع مشابه
Deep Regression Bayesian Network and Its Applications
Deep directed generative models have attracted much attention recently due to their generative modeling nature and powerful data representation ability. In this paper, we review different structures of deep directed generative models and the learning and inference algorithms associated with the structures. We focus on a specific structure that consists of layers of Bayesian Networks due to the ...
متن کاملBayesian Logistic Regression Model Choice via Laplace-Metropolis Algorithm
Following a Bayesian statistical inference paradigm, we provide an alternative methodology for analyzing a multivariate logistic regression. We use a multivariate normal prior in the Bayesian analysis. We present a unique Bayes estimator associated with a prior which is admissible. The Bayes estimators of the coefficients of the model are obtained via MCMC methods. The proposed procedure...
متن کاملAutomatic Bayesian Model Averaging for Linear Regression and Applications in Bayesian Curve Fitting
With the development of MCMC methods, Bayesian methods play a more and more important role in model selection and statistical prediction. However, the sensitivity of the methods to prior distributions has caused much difficulty to users. In the context of multiple linear regression, we propose an automatic prior setting, in which there is no parameter to be specified by users. Under the prior s...
متن کاملA Bayesian Nominal Regression Model with Random Effects for Analysing Tehran Labor Force Survey Data
Large survey data are often accompanied by sampling weights that reflect the inequality probabilities for selecting samples in complex sampling. Sampling weights act as an expansion factor that, by scaling the subjects, turns the sample into a representative of the community. The quasi-maximum likelihood method is one of the approaches for considering sampling weights in the frequentist framewo...
متن کاملBayesian Additive Regression Trees using Bayesian model averaging
Bayesian Additive Regression Trees (BART) is a statistical sum of trees model. It can be considered a Bayesian version of machine learning tree ensemble methods where the individual trees are the base learners. However for datasets where the number of variables p is large (e.g. p > 5, 000) the algorithm can become prohibitively expensive, computationally. Another method which is popular for hig...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Applied Mathematics and Physics
سال: 2020
ISSN: 2327-4352,2327-4379
DOI: 10.4236/jamp.2020.89141